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ABSTRACT
Recent works in network analysis have revealed the existence
of network motifs in biological networks such as the protein-
protein interaction (PPI) networks. However, existing motif
mining algorithms are not sufficiently scalable to find meso-
scale network motifs. Also, there has been little or no work
to systematically exploit the extracted network motifs for
dissecting the vast interactomes.

We describe an efficient network motif discovery algo-
rithm, NeMoFinder, that can mine meso-scale network mo-
tifs that are repeated and unique in large PPI networks.
Using NeMoFinder, we successfully discovered, for the first
time, up to size-12 network motifs in a large whole-genome
S. cerevisiae (Yeast) PPI network. We also show that such
network motifs can be systematically exploited for indexing
the reliability of PPI data that were generated via highly
erroneous high-throughput experimental methods.

Categories and Subject Descriptors
H.2.8 [Information Systems]: DATABASE MANAGE-
MENT—Database Applications, Data Mining

General Terms
Algorithms, Experimentation, Performance

Keywords
Network motif, Graph mining, Protein-protein interaction
network

1. INTRODUCTION

Recent works in network analysis [15] have revealed that
the topology of complex natural networks such as protein-
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protein interaction (PPI) networks are far from random.
Many of these networks have been shown to exhibit such
common global topological features as the “small world”
and “scale free” properties. It turns out that in addition
to these global topological characteristics, many local topo-
logical patterns can also be detected in the large complex
natural networks. For example, Milo et al.[15] discovered
various significant patterns of local connections that oc-
curred more frequently in complex networks than in ran-
domized networks. They called these recurring local topo-
logical substructures as “network motifs”. While relatively
less widely studied than the global topological features, such
network motifs can lead to better understanding about var-
ious classes of complex networks, as some network motifs
may be particular to specific classes of networks. For ex-
ample, certain triad or tetrad motifs are specific topologi-
cal patterns that are found to appear in biological networks
rather than in other networks [15]. The presence of such net-
work motifs also reveals the basic structural elements that
underlie the hierarchical and modular architecture of such
complex natural networks as PPI networks.

Researchers have only recently begun to employ network
motifs in exploring the interactomes; for example, Saito et
al. [17, 16] used manually derived network motifs to detect
false positives in highly erroneous PPI networks, while Al-
bert et al.[1] used them to predict PPIs. These pioneering
works have achieved promising results even though the net-
work motifs used in these works were rather limited—Saito
et al. had used only 5 predefined network motifs of size 3
in their latest work on false positive detection [16], while
Albert et al. had used only 4 predefined small network mo-
tifs for predicting interactions. This shows that the network
motifs can provide a framework for the effective dissection of
the complex PPI network based on the underlying structural
principles.

As many of the relevant processes in biological networks
have been shown to correspond to the meso-scale (5-25 genes
or proteins) [19], it would be interesting to investigate if it
is advantageous to use network motifs that are of equivalent
sizes. However, existing network motif discovery algorithms
[15, 9] are not applicable as they are mostly enumeration-
based and limited to extracting smaller network motifs (up
to size 8) for the following reasons:

1. The number of network motifs candidates increases ex-
ponentially with the motif size [8, 10].
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2. Interesting network motifs are typically repeated and
unique [15], that is, the motifs occur repeatedly in
the PPI network but not in the randomized networks.
Such motifs do not have the downward closure prop-
erty and Apriori algorithms are not applicable here.

3. The graph isomorphism problem, which is the essential
technique to identify different network motifs, is an NP
problem [4].

Such limitations impact the applicability of motif discov-
ery approach for biological applications, as meso-scale net-
work motifs are beyond the reach of existing exhaustive enu-
meration algorithms.

In this paper, we present an efficient graph mining al-
gorithm called NeMoFinder to discover meso-scale repeated
and unique network motifs in a large, genome-scale PPI net-
work for biological applications. The proposed algorithm
utilizes repeated trees to partition a network into a set of
graphs. We introduce the notion of graph cousins to facil-
itate the candidate generation and frequency counting pro-
cesses. Experiment results indicate that NeMoFinder is scal-
able and outperforms existing network motif discovery meth-
ods. We also use the network motifs that are mined from
the real-life biological networks to detect false positives in
the highly erroneous PPI network obtained from biological
experimental methods. The experimental results demon-
strate that the actual meso-scale network motifs extracted
from the biological interaction networks can achieve better
performance than using small, predefined ones for assessing
the reliability of PPIs from conventional high-throughput
experiments.

The rest of this paper is organized as follows. Section 2
introduces the basic concepts. Section 3 describes the re-
lated work in network motif algorithms. In Section 4, we
describe the proposed NeMoFinder algorithm. Section 5
presents the comparative results of using NeMoFinder for
discovering network motifs for S. cerevisiae PPI networks.
In Section 6, we show how the extracted network motifs
can be used to validate the interactions in a PPI network.
Finally, we conclude in Section 7.

2. DEFINITIONS

In this work, we model a PPI network as an undirected
graph G = (V, E) where each vertex in V represents a unique
protein, and each edge in E between two vertices vA and vB

indicates that there is an interaction detected between the
corresponding proteins A and B. We exclude self-loops from
G here, as we are only interested to see the effectiveness of
graph topology between proteins (see section 6).

By definition, a network motif is a frequently occurring
subgraph pattern in a network (in this case, a large genome-
wide PPI network such as the Yeast PPI network that con-
sists of 4341 vertices and 10199 edges). The class of network
motifs that we are interested in extracting from the inter-
actomes are unique non-random subgraphs [15] that occur
repeatedly in the underlying biological network.

Let fg be the number of occurrences of a subgraph g in a
PPI network G. We say that g is repeated if fg is more than
some user-specified value F .

Let fg randi be the frequency of g in a randomized net-
work Grandi , for 1 ≤ i ≤ N , where N is the number of the

randomized networks. Let sg be the number of times fg is
equal or greater than fg randi , 1 ≤ i ≤ N , over the total
number of randomized networks N . We say that g is unique
if its sg is more than some user specified value S.

Definition 2.1. Network Motif. A network motif g in
a PPI network G is a connected, unlabelled and undirected
topological pattern of inter-connections that is repeated and
unique in G.

Note that it is common for proteins and their interac-
tions in complex biological networks such as PPI networks
to participate in multiple biological functional modules. It
is therefore perfectly possible for multiple vertex- or edge-
overlapping subgraphs to be simultaneously active at any
time. Hence, during the subgraph counting process, we
must consider patterns with arbitrary overlaps of vertices
and edges. This results in a computationally more complex
problem as the frequency of network motifs does not have
the downward-closed property in this case.

In addition, the uniqueness property of a network motif is
also not downward-closed as a result of allowing vertex- and
edge-overlap in the network motifs. When a motif g extends
(or reduces) to its supergraph (or subgraph), the decrease
(or increase) of fg and fg rand is non-deterministic. This
means that given a network motif g, we cannot directly in-
fer whether the supergraphs and subgraphs of g are unique.
In fact, even when we have found a non-unique motif, we
still have to generate its supergraphs and check for their
frequencies and uniqueness. This implies that determining
the uniqueness value of a motif is also computationally ex-
pensive.

3. RELATED WORK

In terms of biological network motif mining, the pioneer-
ing work by Milo et al. employed an exhaustive search algo-
rithm that counts all the subgraphs of a given number of ver-
tices. As such, they could only discover small network motifs
in the form of 3-vertex and 4-vertex subgraphs. Kashtan et
al.[9] developed a more efficient sampling method to esti-
mate the relative frequencies of subgraphs. Their method
was useful for analyzing very large networks and for detect-
ing high-order motifs since the runtime is independent of
the network size. However, the sampling approach cannot
be guaranteed to discover the complete set of network mo-
tifs. It also does not scale for large-size network motifs (the
algorithm takes about 2 hours to find a size-8 motif in the
network of transcriptional regulation of E. coli with 423 ver-
tices and 519 edges).

On the other hand, the computationally savvy graph min-
ing community has also been diligent in developing various
algorithms to efficiently discover frequent subgraphs. The
initial algorithms, notably the AGM [8] and FSG [10], were
devised to find all the frequent subgraphs in a large graph
database efficiently through the extension of the market bas-
ket analysis. The algorithms utilize the Apriori property
to discover frequent subgraphs level by level. The gSpan
[21] algorithm discovers frequent substructures by using a
DFS-based canonical representation of graphs and enumer-
ated the search space in a depth-first order. The FFSM
[6] method improves the performance of gSpan by reducing
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redundant subgraph candidates through a vertical search
scheme with join and extension operations. Finally, the
SPIN [7] algorithm overcomes the problem of cycles in graph
by generating the frequent substructures hierarchically in
two steps: starting from trees, and then extending the fre-
quent trees to graphs.

All the above works have focused on mining subgraphs
from a collection of graphs, and considered only the fre-
quency but not the uniqueness property of subgraphs. Fur-
thermore, in these works, the frequency of a subgraph is
determined by the number of global graphs that the sub-
graph occurs in, regardless of whether the subgraph occurs
many times within a particular graph. This is computation-
ally easier than the network motif discovery problem where
the frequency of a motif is determined by the number of oc-
currences, including vertex- and edge-sharing ones, within
one large and complex graph.

Kuramochi et al.[11] designed two methods hSigGram and
vSigGram to look for frequent subgraphs in a sparse graph.
These methods first determine the number of edge-disjoint
occurrences of a subgraph based on approximate and exact
maximum independent set computations and then use it to
prune infrequent subgraphs. However, the methods are not
suitable for biological applications where a protein or an in-
teraction can participate in multiple functional modules, in
other words, the occurrences of a motif can overlap arbi-
trarily in a graph, which is a much more computationally
challenging counting problem.

The FPF method by Schreiber et al.[18] extends hSig-
Gram and vSigGram to find frequent subgraphs with arbi-
trary overlap. FPF uses the concepts of pattern tree and
generating parent to prune redundant subgraph candidate
generation. However, the method is expensive as it has to
perform subgraph isomorphism test for all candidates. Fur-
thermore, it is unable to prune the non-promising subgraphs
as the frequency counting does not satisfy the downward
closed property.

4. NEMOFINDER: NETWORK MOTIF
DISCOVERY ALGORITHM

In this work, we propose a network motif discovery algo-
rithm called NeMoFinder to discover repeated and unique
meso-scale network motifs in a large PPI network (Algo-
rithm 1).

The input to the algorithm is a PPI network G, a user
defined frequency threshold F , a user defined uniqueness
threshold S, and a user defined maximal network motif size
K. The output of the algorithm is a set U of repeated and
unique motifs from size 3 to size K. Note that a subgraph
with k vertices is said to be a size-k subgraph. The pro-
posed algorithm consists of three main steps. First, we find
repeated subgraphs in the PPI network (Lines 4-15). Then
we check the frequency of the repeated subgraphs in the
randomized networks (Lines 16-21). Finally, we determine
the uniqueness values of the the repeated subgraphs (Lines
22-28).

We illustrate the algorithm using the example graph G in
Figure 1. Suppose we want to find all the motifs up to size 5
(i.e., K = 5) from G. We let the frequency threshold F = 2,
and the uniqueness threshold S = 0.95.

Algorithm 1 NeMoFinder

1: Input: G - PPI network;
N - Number of randomized networks;
K - Maximal network motif size;
F - Frequency threshold;
S - Uniqueness threshold;

2: Output: U - Repeated and unique network motif set;
3: D ← ∅;
4: for motif-size k from 3 to K do
5: T ← F indRepeatedTrees(k);
6: GDk ← GraphPartition(G, T )
7: D← D ∪ T ;
8: D′ ← T ;
9: i← k;
10: while D′ �= ∅ and i ≤ k × (k − 1)/2 do
11: D′ ← F indRepeatedGraphs(k, i, D′);
12: D← D ∪D′;
13: i← i + 1;
14: end while
15: end for
16: for counter i from 1 to N do
17: Grand ← RandomizedNetworkGeneration();
18: for each g ∈ D do
19: GetRandFrequency(g, Grand);
20: end for
21: end for
22: U ← ∅;
23: for each g ∈ D do
24: s← GetUniqunessV alue(g);
25: if s ≥ S then
26: U ← U ∪ {g};
27: end if
28: end for
29: return U ;

G

2

3

45

1

Figure 1: Example graph G.

Step 1. Discover Repeated Subgraphs.

The discovery of repeated size-k subgraphs in a PPI net-
work, 2 < k ≤ K, involves the following three steps:

Step 1.1 Find Repeated Size-k Trees.

Algorithm NeMoFinder starts by finding the size-2 tree t2
in G. Then the algorithm extends t2 to a size-3 tree, size-4
trees, etc., until size-K trees are obtained. Figure 2 shows
all the size-2 to size-5 trees. Note that we have two size-4
trees (t4 1, t4 2) and three size-5 trees (t5 1, t5 2, t5 3).

When a size-k tree tk is formed, NeMoFinder counts its
occurrences in G. If the occurrences of tree tk is more than
the user given threshold, then tk is a repeated tree, and it
is added to the set Tk.

In our example, the occurrences/frequencies of the various
size trees are as follows: ft2 = 7, ft3 = 13, ft4 1 = 6, ft4 2 =
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Figure 2: Size 2 to size 5 trees.
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Figure 3: Occurrences of t4 1 in G.

17, ft5 1 = 1, ft5 2 = 5, ft5 3 = 7. All frequency values
except for the frequency of t5 1 are more than the user given
threshold of 2. Thus we have T2 = {t2}, T3 = {t3}, T4 =
{t4 1, t4 2} and T5 = {t5 2, t5 3}.

Step 1.2 Use Repeated Size-k Trees to Partition Graph.

Next, we use the size-k trees in Tk to partition the graph G
into a set of graphs GDk such that each graph Gk j in GDk

embeds a size-k tree in Tk, 2 ≤ k ≤ K and 1 ≤ j ≤ |GDk|.
Consider the trees t4 1 and t4 2 in Figure 2. Figure 3 and

4 shows the occurrences of t4 1 and t4 2 in G. We use t4 1

and t4 2 to partition the PPI network G to obtain the set of
graphs GD4 = {G4 1, G4 2, G4 3, G4 4G4 5} (Figure 5). Note
that each graph in GD4 embeds the tree t4 1 and/or t4 2.

Step 1.3 Perform graph join operation to find repeated size-k
graphs.

For each tree t in Tk, we generate size-k subgraphs with
k−1 edges (the rules for generating the subgraphs are given
in Section 4.1). Then we join t with each of these subgraphs
to generate size-k subgraphs with k edges. The latter are
added to the candidate set Ck.

Figure 6 shows the 4-vertex 3-edge subgraphs, h1, . . . , h5,
generated from the two size-4 trees t4 1 and t4 2 in T4. We
join t4 1 with h1 and h2, and join t4 1 with h3, h4 and h5

to generate 4-vertex 4-edge subgraphs. Figure 7 shows the
subgraphs obtained after joining t4 1 with h1, and t4 2 with
h3. The non-redundant subgraphs g1 1 and g1 2 are added
into the candidate set C4.

For each subgraph g ∈ Ck, we check its occurrences in
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Figure 4: Occurrences of t4 2 in G.

GDk. If the occurrences of g is more than the threshold
F , we add g to the set Dk. In our example, fg1 1 = 2 and
fg1 2 = 5. Thus, g1 2 is a repeated subgraph and is added
to the set of frequent subgraphs D.

Next, we use the repeated subgraphs obtained to gener-
ate all the possible k-vertex and k-edge subgraphs. These
repeated subgraphs are joined with the newly generated sub-
graphs to get (k +1)-edge subgraphs. The repeated (k +1)-
edge subgraphs are added to D. This process continues until
a complete graph of k ∗ (k − 1)/2 edges is obtained, or no
repeated subgraph can be found.

Figure 8 shows the 4-vertex and 4-edge subgraphs, h6 and
h7, generated from the repeated subgraph g1 2. We join g1 2

with h6 and h7 to get a 4-vertex and 5-edge subgraph g2 (see
Figure 9). Since the frequency of g2 in GD4 is not more than
2, it is not a repeated subgraph and the algorithm stops.

At the end of Step 1, the algorithm outputs the set D
which contains all the repeated trees and subgraphs from
size-2 to size-K.

Step 2. Determine Subgraph Frequency in Random-
ized Networks.

Next, we use the Markov-chain algorithm [12] to gener-
ate randomized networks Grandi (1 ≤ i ≤ N) by swapping
randomly selected interactions, as was done in [15]. This
ensures that the randomized networks have the same single-
vertex characteristics as the PPI network, i.e., each vertex
in the randomized networks has the same number of neigh-
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Figure 5: Set of graphs GD4; each graph in GD4 embeds

t4 1 and/or t4 2.
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Figure 6: Generate 3-edge subgraphs from size-4 trees.

bors as the corresponding vertex in the PPI network. We
check the frequency of the subgraphs in D in each of the
randomized networks Grandi (1 ≤ i ≤ N). The procedure is
similar to Step 1.

Step 3. Compute Uniqueness of Subgraphs.

Finally, we compute the uniqueness value for each sub-
graph in D based on its frequencies in the input PPI network
and the randomized networks.

NeMoFinder is scalable because the repeated trees natu-
rally partitions the network into a set of graphs GD. Hence,
the problem of counting the frequency of a size-k subgraph g
in the network is reduced to the problem of finding the num-
ber of graphs in GD that contain the subgraph g, which is
naturally downward closed.

In order to reduce the computational complexity, NeMoFinder
adopts the idea in SPIN [7] to search for repeated trees and

t4_1

t
4_2

h
2

h
3

g1_1

g
1_2

Figure 7: Examples of graph join operations for 3-edge

subgraphs.

h
6

h
7

g1_2

Figure 8: Generate 4-edge subgraphs from repeated 4-

edge subgraphs of G.

g
1_2

h
6 g

2

Figure 9: Examples of graph join operations for 4-edge

subgraphs.

then extend them to subgraphs. However, NeMoFinder dif-
fers from SPIN in the following:

1. The notion of frequency in SPIN is different from our
NeMoFinder. SPIN simply checks whether a subgraph
occurs in a graph; it is not interested in counting how
many times the subgraph occurs in the graph. In con-
trast, NeMoFinder considers occurrences of a subgraph
in a network, including arbitrary overlaps.

2. SPIN uses equivalence classes to find maximal labelled
frequent subgraphs in a set of graphs. In contrast,
NeMoFinder is focused on discovering repeated un-
labelled subgraphs from a single graph. Hence, our
NeMoFinder is able to utilize the symmetry property
of unlabelled trees to further reduce the number of
candidate trees enumerated.

4.1 Candidate Generation using Graph Cousins
Finding repeated subgraphs involves generating candidate

subgraphs and frequency counting (see Algorithm 2). The
standard method to generate a subgraph candidate gk from
a tree tk is to add a new edge to tk and check whether the
resulting graph is already in the candidate set Ck. How-
ever, Ck can become very large for meso-scale subgraphs,
and checking whether a graph exists in Ck requires graph
isomorphism test which is a NP problem.

Given that the network motifs are meso-scale, we use adja-
cency matrices to represent the subgraphs so as to facilitate
the graph join operation to generate candidate subgraphs.
A graph g with n vertices can be modelled using a n × n
matrix M . An entry mi,j in an adjacency matrix is set to
1 if there is an edge from vertex i to j, and 0 otherwise.
The code of M , denoted as code(M), is a sequence formed
by linking the lower triangular entries of M in the follow-
ing order: m1,1m2,1m2,2...m(i, j)...mn,1mn,2...mn,n where
(0 < j ≤ i ≤ n).

We can transform any adjacency matrix into a unique
representation called canonical adjacency matrix (CAM) [4].
Then two subgraphs that are isomorphic to each other have
the same CAM, and vice versa. The canonical adjacency
matrix (CAM) of a subgraph g, denoted as CAM(g), is the
adjacency matrix of g with the maximal code. The last edge
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entry of CAM(g) is the rightmost non-zero edge entry in
code(CAM(g)). By removing the edge which corresponds
to the last edge entry of CAM(g), we obtain a subgraph
of g. We call the adjacency matrix of such a subgraph as
subCAM(g) defined as follows:

Definition 4.1. subCAM of a graph. Let CAM(g) be
canonical adjacency matrix of a graph g. Then subCAM(g)
is a matrix obtained by setting the last edge entry in CAM(g)
to 0.

Given two subgraphs g and h, if subCAM(g) = subCAM(h),
then we say that h is a cousin of g. There are three types
of cousin relationship between g and h:

• Type I: Direct Cousin h is isomorphic to a subgraph
g′ which has the same number of vertices and edges as
g, and g �= g′;

• Type II: Twin Cousin h is isomorphic to subgraph
g;

• Type III: Distant Cousin h is a disconnected sub-
graph.

Figure 10 shows the adjacency matrices for the size-4 trees
t4 1 and t4 2 and the generated subgraphs h1, . . . , h5 in Fig-
ure 6. From the above definitions, we see that h1 is a Type
I direct cousin of t4 1 since it is isomorphic to t4 2; h2 is
a Type III distant cousin of t4 1 since it is a disconnected
subgraph; h3 is a Type II twin cousin of t4 2 since it is iso-
morphic to t4 2; h4 is a Type I direct cousin of t4 2 since it
is isomorphic to t4 1; h5 is a Type III direct cousin of t4 2

since it is a disconnected subgraph.

h2
t
4_1 h1
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0 001
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0 000
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h
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Figure 10: Adjacency matrices for the graphs in Fig-

ure 6.

We now show how the subgraph generation and frequency
counting are efficiently carried out based on the cousins of
a graph.

Given a repeated subgraph g of size k, we first find its set
of cousins, H . Then we join g with each graph h ∈ H to
form new subgraphs of size k that have one more edge than
g. Let CAM(g) be CAM of g and CAM(h) be CAM of h,
then the adjacency matrix M of the new subgraph candidate
is a k × k matrix and

mi,j =

{
1 if CAM(g)i,j = 1 or CAM(h)i,j = 1
0 otherwise

(1)

Algorithm 3 gives the pseudo code for the candidate gen-
eration procedure.

The following theorem proves that the join operation gen-
erates the complete set of candidate subgraphs.

Algorithm 2 FindRepeatedGraphs(k, i, D′)
1: Input: D′ - Set of repeated subgraphs with k vertices and

i− 1 edges;
2: Output: D′′ - Set of repeated subgraphs with k vertices and

i edges;
3: C ← CandidateGeneration(k, i, D′);
4: D′′ ← FrequencyCounting(k, i, C);
5: return D′′;

Algorithm 3 CandidateGeneration(k, i, D′)
1: Input: D′ - Set of repeated subgraphs with k vertices and

i− 1 edges;
2: Output: C - Set of candidates with k vertices and i edges;
3: C ← ∅;
4: for each g ∈ D′ do
5: H ← GetCousin(g);
6: for each h ∈ H do
7: g′ ← join(g, h);
8: C ← Can ∪ {g′};
9: end for
10: end for
11: return C;

Theorem 4.1. Given all the subgraphs g ∈ Ck which has
k vertices and l edges (l ≥ k−1), the join operation generates
the complete set of subgraphs C′

k, where each g ∈ C′
k has k

vertices and l + 1 edges.

Proof: Let M be an adjacency matrix of a subgraph g ∈
C′

k and e1 be the last edge entry in M , such that matrix
M1 = M − {e1} is a CAM of a subgraph g1. Let e2 be the
last edge entry in M1. Since M1 is a connected graph, its
corresponding subgraph g1 must be in Ck.

Let M2 = M1 − {e2} + {e1} and M2 be an adjacency
matrix of a subgraph g2, we have g1 �� g2 ⇒ g. Based on
the definition of graph cousins, if g2 is isomorphic to g1, g2

is a Type II twin cousin of g1; if g2 is connected but not
isomorphic to g1, then g2 is a Type I direct cousin of g1; if
g2 is disconnected, g2 is a Type III distant cousin of g1.

Since the join operation joins g1 with all its cousins, each
g ∈ C′

k is generated from Ck. �

4.2 Frequency Counting
A straightforward method to count the frequency of a

size-k subgraph g in a graph G is to check all the graph
in GDk. However, this is an NP-complete subgraph iso-
morphism problem. Given that the discovery of network
motifs requires checking the frequency of the candidate sub-
graphs in both the PPI network as well as the large number
of randomized networks, it is critical for us to reduce the
computational time of the frequency counting process. This
can be achieved by leveraging the properties of the different
types of cousins.

Theorem 4.2. Let Lx denote the set of graphs in GDk

such that each graph in Lx embeds x. Let h be a Type I
direct cousin of a size-k subgraph g and g′ be the subgraph
obtained by joining g and h. Then we have Lg′ = Lg ∩ Lh,
and the frequency of g′ is given by |Lg ∩ Lh|.

Proof: Each graph in Lg′ must embed g and h since g′

contains all the edges of both g and h. Thus, we have Lg′ ⊆
Lg ∩ Lh.
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Algorithm 4 FrequencyCounting(k, i, C)

1: Input: GDk - Set of graphs generated by partitioning G with
size-k repeated trees;

C - Set of subgraph candidates with k vertices and i edges;
F - Frequency threshold;

2: Output: D′′ - Set of repeated subgraphs with k vertices and
i edges;

3: D′′ ← ∅;
4: for each g′ ∈ C do
5: Get the join parameter of g′: g and h;
6: Lg ← set of graphs in GDk embedding g;
7: Lh ← set of graphs in GDk embedding h;
8: if fg < F or fh < F then
9: fg′ ← 0;
10: else if type of h = Type I direct cousin then
11: fg′ ← |Lg ∩ Lh|
12: else if type of h = Type III remote cousin then
13: fg′ ← |Lg ∩ Lh|
14: else if type of h = Type II twin cousin then
15: fg′ ← CheckAllOccurances(g);
16: end if
17: if fg′ > F then

18: D′′ ← D′′ ∪ {g′};
19: end if
20: end for
21: return D′′;

On the other hand, each graph in Lg ∩Lh embeds both g
and h. Hence, the graph must embed g′, since each edge in
g′ is in either g or h. Thus, we have Lg′ ⊇ Lg ∩ Lh.

Therefore, we have Lg′ = Lg ∩Lh and the frequency of g′

is given by |Lg ∩ Lh|. �

Let us consider t4 1 and h2 in Figure 7. We have Lt4 1 =
{G4 1, G4 2, G4 3, G4 5} and Lh2 = {G4 1, G4 2, G4 3, G4 4, G4 5}
(see Figure 5). Then, for subgraph g1 2 which is generated
by joining t4 1 and h2, the graphs in GD4 that embed g1 2

are Lg1 2 = Lt4 1 ∩ Lh2 = {G4 1, G4 2, G4 3, G4 5}. Hence,
the frequency value of g1 2 is 4.

Similarly, we can prove that if h is a Type III distinct
cousin of a size-k subgraph g, the frequency of g′ (the sub-
graph obtained by joining g and h) is also given by |Lg∩Lh|.

However, if h is a Type II twin cousin of a size-k sub-
graph g, then h is isomorphic to g. In order to determine
the frequency of the subgraph obtained by joining g and h,
we have to check all the graphs in GDk that embeds g. This
frequency counting involves the NP-complete subgraph iso-
morphism test. Hence, given that the same subgraph can
be generated by joining g with its various types of cousins,
we choose to join g with its Type I or Type III cousin when-
ever possible to avoid the subgraph isomorphism test. Al-
gorithm 4 gives the pseudo-codes for the frequency counting
process.

For the complexity analysis of NeMoFinder, please refer
to our technical report TRC6/06 (June 2006) [2].

5. PERFORMANCE STUDY

We have implemented our NeMoFinder algorithm in C++
and carried out experiments to compare NeMoFinder with
existing network motif discovery algorithms such as the enu-
meration method [15], sampling method [9], and FPF [18].

We use two real-life datasets, the Uetz dataset and the
original MIPS CYGD dataset. The Uetz dataset [20] con-
tains 957 PPIs and 1004 proteins of S. cerevisiae and can

be downloaded from the BRITE website. The MIPS CYGD
dataset [14] is the whole-genome PPI network of S. cere-
visiae from the Munich Information Center for Protein Se-
quences. After removing redundancy and orphan links, this
dataset contains 10199 PPIs involving 4341 proteins that
have been detected with high-throughout genome-wide bio-
logical experimental methods.

First, we evaluate the runtime of the four network motif
discovery methods (enumeration, sampling, FPF, NeMoFinder)
in finding network motifs of varying sizes in the Uetz dataset.
We set the frequency threshold to 50, the uniqueness thresh-
old to 0.95, and the number of randomized networks to 100.
Figure 11 shows that NeMoFinder consistently gives the best
performance, with 20- to 100-fold speed up. We also observe
that only NeMoFinder manages to find all the motifs within
a reasonable amount of time.
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Next, we evaluate the performance of NeMoFinder under
varying frequency thresholds. We set the uniqueness thresh-
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old to 0.95, the number of randomized networks to 100, and
the maximal size of network motif to 9. The enumeration
method and sampling method have been excluded from this
experiment because they could not scale up to size-9 motifs.
Figure 12 indicate that NeMoFinder is able to achieve up to
100-fold speedup over FPF.

We also compare the maximal motif size and the total
number of identified motifs by the four algorithms to find
network motifs of varying sizes in the MIPS dataset, which
is much larger than the Uetz dataset. We set the frequency
threshold to 50, the uniqueness threshold to 0.95, the num-
ber of randomized networks is set to 1000. Figure 13 shows
that NeMoFinder was able to extract network motifs up
to size 12, while the maximum sizes of the motifs discov-
ered by FPF, sampling method and enumeration method
are 9, 8 and 5 respectively. In addition, NeMoFinder was
able to find a total of 11140 motifs, while FPF, sampling
method and the enumeration method discovered only 1112,
848 and 21 network motifs respectively. The limited number
of network motifs found by FPF, sampling and enumeration
methods was due to the limitation of the motif size that
these algorithms could handle.

Figure 13: Comparison in size and number of network

motifs that can be found by four algorithms in MIPS

PPI network.

6. A MOTIF APPLICATION: PPI
VALIDATION

Previous works in biological network motifs have focused
mostly on motif discovery; there has been little or no work
in showing how the network motifs can be systematically
exploited. In this section, we describe how we can exploit
the extracted network motifs in PPI validation. Our results
show that the inclusion of the larger meso-scale network
motifs indeed leads to better results.

Technological developments in high-throughput PPI de-
tection methods such as yeast-two-hybrid and protein chips
have enabled biologists to experimentally detect PPIs at the

whole genome level for many organisms. For example, cur-
rently more than 15000 PPIs have already been detected
and deposited in biological databases for S. cerevisiae. The
abundant number of PPIs enables scientists to analyze these
organisms at the genome level. However, a significant pro-
portion of the PPI networks obtained from high throughput
biological experiments has been found to contain false posi-
tives. Recent surveys have revealed that the reliability of the
popular high-throughput yeast-two-hybrid assay can be as
low as 50% [13]. These errors in the experimental data may
lead to spurious discoveries that can be potentially costly,
e.g., wrong drug targets for diseases.

In a first attempt to validate detected interaction can-
didates, Saito et al. [17] develop an interaction reliability
index called interaction generaility (IG1). The IG1 measure
is based on the notion that the neighbors of the interact-
ing partners are likely to also interact with each other. In
other words, it uses a very simple network motif to detect
false positives by noting that interactions between partners
that are involved in lone star-like motifs are probably spu-
rious. Positive results from the various experiments con-
ducted by Saito et al. suggest that the use of even such
a seemingly primitive network motif in dissecting genome-
wide PPI networks is helpful in increasing the reliability of
currently erroneous experimental interaction data. In fact,
the authors subsequently developed a second reliability in-
dex called IG2 [16] that was based on 5 possible network
motifs that involved a third protein C together with the
candidate interacting protein pair (A, B). Their experimen-
tal results showed that IG2 outperformed IG1, suggesting
the advantage of using more sophisticated network motifs in
dissecting the experimentally derived PPI networks.

In this section, we investigate whether using the actual
network motifs can indeed give better performance than us-
ing the simple, predefined ones such as those employed in
IG1 and IG2.

6.1 Motif Strength
We have seen how NeMoFinder is able to discover a much

more comprehensive set of network motifs as compared to
the other methods (Section 5). For it to be useful in practice,
it is important that the set of network motifs can provide
sufficient coverage of the vast interactome. We found that
96% of PPIs in the MIPS dataset was indeed covered by at
least one network motif discovered by NeMoFinder.

First, we rank the network motifs in terms of their contri-
bution to the PPI network with respect to their individual
sizes, frequencies and uniqueness. For simplicity, we assume
that the motifs are independent here. We define the strength
MSk(g) for each motif g as:

Definition 6.1. MotifStrength. The strength of a size-
k motif g, denoted as MSk(g), is the frequency value of the
motif times its uniqueness value over maxk, where maxk is
the maximal value of s(g)× f(g) of all size-k motifs.

MSk(g) =
s(g) × f(g)

maxk
(2)

6.2 Evaluation based on motif strength
Having defined the MotifStrength, we score each interac-

tion in the PPI network by combining the strengths of the
network motifs that contain the interaction (edge).
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Definition 6.2. Reliability Index of PPI The relia-
bility index of a PPI (A, B), denoted as I(A,B), is the sum
of the MotifStrength of all the motifs that contain the edge
(A, B).

I(A,B) =

K∑
k=2

n∑
i=0

MSk(gi) × k (3)

where gi, 1 ≤ i ≤ n are the motifs where edge (A,B)
occurs and k is the size of gi.

We apply our method, as well as IG1 and IG2, on the
MIPS CYGD dataset described in Section 5 to compute reli-
ability indices for the 10199 S. cerevisiae PPIs in the dataset.
We then compare the quality of the various reliability indices
in the following three different aspects:

1. Function Homogeneity. The cellular functions of
the protein partners in a genuine biological interac-
tions are likely to be similar. As such, we would ex-
pect an interactome that has been sorted with a good
reliability index to exhibit a high degree of functional
homogeneity in the interactions with high reliability
scores. We use the Comprehensive S. cerevisiae Genome
Database (dated 2005-06-20) at MIPS [14] as the ground
truth for the proteins’ functional annotations. Out
of the 4341 proteins in the MIPS CYGD interaction
dataset, 3150 proteins have functional annotations and
4743 interactions involve the annotated proteins.

2. Localization Coherence. With the exception of the
proteins involved in cellular pathways such as the sig-
nalling pathway, the cellular localizations of the pro-
tein partners in a genuine biological interactions are
expected to be the same. As such, a better reliabil-
ity index would exhibit a higher degree of cellular co-
localization amongst the protein partners in the sorted
interactions. We use the cellular localization annota-
tions of the S. cerevisiae proteins in the MIPS database
as the basis for comparison in our experiment.

3. Gene Expression Correlation. Studies have shown
that the average correlation coefficient of gene expres-
sion profiles that corresponds to interacting protein
pairs is significantly higher than those that correspond
to random pairs [5]. As such, we can also use the de-
gree of gene expression correlation to evaluate the rel-
ative quality of the PPI reliability indices. For gene
expression correlation analysis, we downloaded the S.
cerevisiae gene expression dataset from Eisen’s Lab [3].
The dataset comprises expression vectors from 80 ex-
periments on 6221 genes.

Figure 14 shows that as the reliability index value is in-
creased, the proportion of interacting pairs with common
cellular functions also increases, indicating an increase in
the number of true positives in the filtered interaction data.
The reliability indices generated using the NeMoFinder’s
network motifs show significant increases (from 61% to 87%
and 81%) than those using IG1 and IG2 (from 61% to only
68% and 73% respectively).

Figure 15 shows the relative performance in terms of cel-
lular localization coherence. Using the reliability indices
computed by the network motifs, the proportion of interact-
ing pairs with common cellular localization increases from
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85.3% to 94.0% and 91.7% for the NeMoFinder network mo-
tifs, again outperforming IG1 and IG2 (from 85.3% to 87.0%
and 90.1%).
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The results based on gene expression correlation, shown
in Figure 16, exhibit a similar trend. Again, the increase in
the average gene expression correlation between the protein
partners in the sorted PPIs is much more significant when
using reliability indices computed with NeMoFinder’s net-
work motifs (from 26.4% to 33.5% and 30.8%) than those
generated by using IG1 and IG2 (from 26.4% to 27.6% and
29%).

These results show that the PPI reliability indices com-
puted using the NeMoFinder network motifs are more reli-
able than those computed using IG1 and IG2, demonstrat-
ing the positive effect of using a more comprehensive set
of actual network motifs against a small number of simple,
predefined motifs. Additionally, we also compared the per-
formance of using motifs of different sizes. In all three eval-
uation experiments, the reliability indexes computed using
NeMoFinder network motifs of sizes up to 12 consistently
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show superior performance over that computed with motifs
of sizes only up to 8. This indicates that it is advantageous
to include the larger motifs, justifying the need for discov-
ering meso-scale network motifs.

7. CONCLUSIONS

Existing network motif discovery algorithms are limited to
extracting smaller network motifs and cannot be employed
to mine meso-scale level network motifs in large biological
networks. In this paper, we have presented an efficient net-
work motif discovery algorithm called NeMoFinder to dis-
cover larger-sized repeated and unique network motifs in
PPI networks. The algorithm utilizes repeated trees to par-
tition a network into a set of graphs. We have introduced
the notion of graph cousins for efficient candidate generation
and frequency counting. We use NeMoFinder to successfully
extract, for the first time, up to size-12 network motifs from
the whole S. cerevisiae PPI network. The network motifs
discovered by NeMoFinder provided a good coverage of the
PPIs in the vast interactome.

In this work, we also showed an example of how the net-
work motifs can be systematically applied in the validation
of the PPIs in an interactome. Our results confirmed that
employing the larger actual network motifs derived from bi-
ological networks instead of predefined small-sized network
motifs can indeed achieve better results. Future work will
include directed network motif discovery and network motif
labelling.

8. REFERENCES
[1] I. Albert and R. Albert. Conserved network motifs

allow protein-protein interaction prediction.
Bioinformatics, 20(18):3346–3352, 2004.

[2] J. Chen, W. Hsu, ML. Lee, and SK. Ng. Discovering
and exploiting meso-scale network motifs in protein
interactomes. Technical Report TRC6/06, National
University of Singapore, 2006.

[3] M.B. Eisen, P.T. Spellman, P.O. Brown, and
D. Botstein. Cluster analysis and display of

genome-wide expression patterns. Proc. Natl Acad.
Sci. USA, 95:14863–14868, 1998.

[4] S. Fortin. The graph isomorphism problem. Technical
Report TR96-20, Department of Computing Science,
University of Alberta, 1996.

[5] A. Grigoriev. A relationship between gene expression
and protein interactions on the proteome scale.
Nucleic Acids Res, 29(17):3513–3519, 2001.

[6] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraph in the presence of isomorphism.
ICDM, pages 549–552, 2003.

[7] J. Huan, W. Wang, J. Prins, and J. Yang. Spin:
Mining maximal frequent subgraphs from graph
databases. SIGKDD, 2004.

[8] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph. PKDD, pages 13–23, 2000.

[9] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon.
Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs.
Bioinformatics, 20(11):1746–1758, 2004.

[10] M. Kuramochi and G. Karypis. An efficient algorithm
for discovering frequent subgraphs. TKDE, 2004.

[11] M. Kuramochi and G. Karypis. Finding frequent
patterns in a large sparse graph. In SIAM
International Conference on Data Mining, 2004.

[12] S. Maslov and K. Sneppen. Specificity and stability in
topology of protein networks. Science,
296(5569):910–913, 2002.

[13] C.V. Mering, R. Krause, B. Snel, et al. Comparative
assessment of largescale data sets of protein-protein
interactions. Nature, 417:399–403, 2002.

[14] H.W. Mewes, D. Frishman, U. Guldener, et al. Mips:
a database for genomes and protein sequences. Nucleic
Acids Res, 30(1):31–34, 2002.

[15] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science,
298:824–827, 2002.

[16] R. Saito, H. Suzuki, and Y. Hayashizaki. Construction
of reliable protein-protein interaction networks with a
new interaction generality measure. Bioinformatics,
19:756–763, 2002.

[17] R. Saito, H. Suzuki, and Y. Hayashizaki. Interaction
generality, a measurement to assess the reliability of a
protein-protein interaction. Nucleic Acids Res,
30:1163–1168, 2002.

[18] F. Schreiber and H. Schwobbermeyer. Frequency
concepts and pattern detection for the analysis of
motifs in networks. Transactions on Computational
Systems Biology, 3(LNBI 3737):89–104, 2005.

[19] V. Spirin and L.A. Mirny. Protein complexes and
functional modules in molecular networks. PNAS,
100(21):12123–12128, 2003.

[20] P. Uetz, L. Giot, G. Cagney, et al. A comprehensive
analysis of protein-protein interactions in
saccharomyces cerevisiae. Nature, 403(6770):623–627,
2000.

[21] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. ICDM, 2002.

Research Track Paper

115



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


