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Abstract

Current protein interaction detection via high-throughput ex-
perimental methods such as has been reported to 
be highly erroneous. This work introduces a novel measure called 
IRAP for assessing the reliability of protein interaction based on
the underlying topology of theprotein interaction network.A can-
didate protein interaction is considered to be reliable it is in-
volved in a closed loop in which the alternative path of interac-
tions between the two interactingproteins is strong. We design an
algorithm to compute the IRAP value for each interaction in a
protein interaction network. Validation of IRAP as a measurefor
assessing the reliability of protein-protein interactions from con-
ventional high-throughput experiments is performed. We devise a
heuristic algorithm to compute that is able to achieve a 40%
speedup in runtime while maintaining a 95% accuracy.

1. Introduction

Advances in high-throughput protein interaction detec-
tion methods such as yeast-two-hybrid and protein chips 
171have enabled biologists to experimentally detect pro-

tein interactions at the whole genome level for many or-
However, a significant proportion 

of the protein-protein interactions obtained from these high
throughput biological experiments has been found to con-
tain false positives. This has led researchers to develop
tematic methods to detect reliable protein interactions from
high throughput experimental data. 

One approach is to combine the results from multiple in-
dependent detection methods to derive highly reliable data

However, this approach is limited because of the low
overlap between the different detection methods. An-
other approach is to model the expected characteristics of
true protein interaction networks, and then devise mathe-
matical measures to assess the reliability of the candidate 
interactions. Saitoet al. developeda series of computational
measures called interaction generalities and 12,

to assess the reliability of protein-protein interactions.
The measure is based on the idea that interacting 
proteins that appear to have many interacting partners that 
have no further interactions are likely to be false positives.

is a local measure which does not consider the topo-
logicalproperties of the protein interaction network beyond
the candidateprotein pair. As such, coverage for the dif-
ferent types of experimental data errors is limited. The IG2
measure incorporates the topological properties of in-
teractions beyond the candidate interacting pairs. We ob-
serve that IG2 remains a local measure as the topological 
context that it considers involved only fivetopological com-
ponents of a neighbor C.Both the and IG2 measures do
not consider the underlying system-wide topological struc-
ture of the entire interaction network to determine the relia-
bility of the discovered protein interactions. 

Biological studies have revealed that interaction clusters
formed by contiguous connections that form closed loops 
in protein interactionnetworks indicate an increased likeli-
hood of biological relevance for the corresponding poten-
tial interactions Proteins that are found together 
within a circular contig in yeast-two-hybrid screens have
been detected for known proteins in macromolecular com-
plexesaswell as signal transduction pathways Cir-
cular contigs are typically formed by the presence of alter-
native paths in the interaction networks. This has led to the
use of alternativeinteraction paths in protein interaction net-
works as a measure to indicate the functional linkage be-
tween two proteins

In this paper, we adopt the alternative path approach and
introduce a quantitative measure called IRAP-Interaction
Reliability by Alternative Path, to assess the reliability 
of a detected protein interaction with respect to the pres-
ence of alternative reliable interaction paths in the underly-
ing topology of the experimentally derived interaction net-
work. IRAP takes into consideration the strength and the 
length of the alternativepaths connecting the two proteins. 
We develop an algorithm to compute



the IRAP values of the interactions in protein interaction 
networks. Using the yeast protein-protein interaction data
with annotated information as well as other experimental 
data, we validate IRAP as a good system-wide measure for 
detecting reliable protein-protein interactions from error-
prone high-throughput experimentaldata. However, the al-
gorithm is computationally expensive and not scalable for
large protein-protein interactionsnetwork. Toovercome this 
limitation, we devise a heuristic that is able to achieve
a 40% speedup while maintaining a 95% accuracy level. 

2. IRAP: Interaction Reliability by Alterna-
tive Path 

A protein interaction network can be modelled using an
undirected network G = (V,E).Each node in the network
represents a unique protein. An edge exists between two
nodes and if there is an interaction between the cor-
responding proteins A and B. The weight for this edge is
initialized as the normalized value of reversed

As defined by Saito et B ) is the number of
proteins that directly interact with the candidate protein
pair, subtracted by the number of proteins interacting with
more than one protein while is the maximum

value in the interaction network G.We use as the
initial edge weights to reflect the local reliability of each in-
teraction in the protein interactionnetwork.

Our task is to find the strongestalternative path that con-
nects a candidate pair of interacting proteins A and B. We
initialize the weight value for no& to 1 and the rest of
the nodes in the network G to 0. To compute B),
we calculate the weight product through a path from to

in the network that excludes the direct connection be-
tween the two nodes.
Non-reducible Path. A path = ..., is a
reducible path of edge U B ) have = =

(or vice versa); and there is no shorterpath connect-
ing node and that shares some common intermedi-
ate nodes with the path That is, there does not existspath

= .. such that = =
= m <

Given an edge in the network G, we devise an
alternative path selection strategy to nominate one of the
non-reducible paths as its measure of reliability. Essentially, 
we are looking at the strongest alternative path that connects 
the candidate interacting pair of proteins A and B in the in-
teraction network. Figure 1 shows 3 alternative paths be-
tween the nodes A and B. Two of the paths 
and <A-F-G-D-E-B> have nodes D and E in common.
The shorter path is selected as a non-reducible path. 

Given all the non-reducible paths connecting nodes 
and that donot have any common nodes with each other, 
we select the path that has the largest weight product. 

IRAP. The reliability of a candidateprotein interaction (A,
B), B), is indicated by the value of the weight
product of the strongest non-reducible path of interactions
connecting the two proteins in the underlying interaction
network.

Formally, IRAP can be defined as follows:

Figure 1. An exampleof alternate paths.

Based on the definition of the strongest alterna-
tive path may not necessarily be the shortest path. Thus, 
standard shortest path algorithms such as [2] can-
not be directly applied to find the strongest alternative path.

to systematically compute the IRAP values in a large undi-
rected network. The algorithm employs breath-first search
strategy while keeping track of useful statistics in order to
find the strengthsof all alternative paths for a given pair of
interacting proteins. The computational time for each inter-
action pair is linear to the number of edges, m. Since there 
are altogether m candidate interaction pairs, the total com-
putational time is

We developan algorithm called

3. Validation of IRAP

We implemented the alternativepath finder algorithm in
and applied it to compute and evaluated the IRAP

values the IRAP values of protein interactions in large
protein interaction networks generated by data from high-
throughout genome-wide biological experimental methods. 
After combining the publicly available yeast protein inter-
action et et al. and
and removing redundancy from them, we obtained 8,454in-
teractions involving 4,319 proteins. Note that this is a much
larger set of interaction than the interaction that

et al. have previously used to evaluate their IG2 mea-
sure in new interaction data have since been
added to the above databases. For comparison, we also im-
plemented the and IG2 algorithms

The effectiveness of the using the computed IRAPval-
ues to detect reliable protein-protein interaction is shown in
the following two sets of experiments.



3.1. Experimentally-ReproducibleInteractions , , , , , , , , , 

Protein interactions that are confirmed by multiple inde-
pendent experiments are often regarded as highly reliable.
In our combined dataset, 2,394 (that is, -28%)experimen-
tally reproducible interactions are confirmed by at least two
independent experiments. We use this set of reproducible
interactions as the “gold standard” to estimate the degree of
true positives in our interaction data.

Figure 2 shows the ratios of experimentally-reproducible
(reliable)interactions over the non-reproducibleones found 
in of protein interactions filtered with various IRAP
values. We observe that IRAP is effective in detecting reli-
able protein interactions from high-throughput experimen-
tal data-the proportion of reliable experimentally repro-
ducible interactions increases with higher IRAP values, as
more of the unreliable experimental interactions are filtered
away by the higher IRAP thresholds.

We compare the performance of IRAPwith and IG2
based on their average values in the classof reproducible in-
teractions and non-reproducible interactions. Table 1shows
the mean and standard deviation values for and
IRAP. The results indicate that the difference between the
mean values of for reproducibleinteractions and 
reproducible interactions is much more pronounced than the
corresponding mean values for both and Further,
IRAP has a relatively higher standarddeviation value-this
is because about 14%overlapped interactions in the target 
network have no alternativepath and thus have By
excluding these interactions,the corresponding standard de-
viation value for IRAP decreases to a comparable 0.14.

3.2. Functional Associations

The ‘guilt-by-association’ approach has been used
widely to infer the functional roles of unknown proteins.
True interacting proteins should share at least a common
functional role. We use this principle to evaluate the perfor-
mance of IRAP in filtering falsepositives from large sets of
experimental protein interaction data. We expect that as the 
rate of true positive increases in the resulting IRAP-filtered
data, the proportion of interacting proteins with a common
functional role should also increase.

We refer to the Comprehensive Yeast Genome Database
at MIPS for reference functional annotations of the
yeast proteins. Out of the 4,319 proteins in our original in-
teraction dataset, 3,150 proteins with functional anno-
tations and 4,743 protein-protein interactions involve the
annotated proteins. Only 61% of these interactions involve 
proteins sharing at least one common cellular roles.

1 http://mips.gsf.de/genrelprojlyest

Figure 2. Ratio of reproducible interactions over 
the non-reproducibleones increases as protein in-
teractions are filtered with higher IRAP values.

Table 1. Mean and standard deviation values for
IG2and IRAP.

Figure 3 shows the effect of as a filtering measure:
as the IRAP threshold is increased, the proportion of inter-
actingpairs with common cellular roles increases from 61%
to indicating an increased rate of true positives in the
filtered interaction data. With the proportion of inter-
acting pairs with common functional roles only increases 
from 61%to about 73%;and with the proportion only
increases from 61% to 68%. The performance of is
clearly better than and IG2 for identifyingtrue protein
interactions.
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Figure 3. Proportion of interacting proteins with 
common cellular functional roles Increases at dif-
ferent rates under different interaction reliability 
measures.



4. Heuristic IRAP Algorithm 1

While has shown great promises, the 
AlternativePathFinder algorithm used to deter-
mine is computationally expensive and cannot scale
well. We introduce a heuristic search to speed up the com-
putation of in large protein-to-protein interac-
tion networks. The idea is to utilize a well designed 
cost function to guide the search for the most promis-
ing path. Here, we adopt the best first search strategy. 
Each node n that has been visited is assigned two val-
ues: the first value g is the cost from the source node
to and the second value h is the estimated distance 
from n to the destination node. The node with the low-
est +h value will be visited first.

The key to ensuring a good speedup using heuristic
search lies in the design of the cost function, namely, the
function to estimate the h value. Analysis of interactome
data has highlighted the apparent scale-free behaviour of
the observed protein-protein interaction network 
free networks are characterized by an uneven distribution
of connectedness. A selected number of nodes will serve as 
“very connected” hubs, while the rest of the nodes in the
network will have very few neighbours. We call the former
a hub node. The defining feature of scale-free networks is
that the degrees of vertices (k) are distributed according to
a power law: where 0 and k = . ...
Hence, a plot of by will show
a decreasing linear trend. 

This type of degree distribution greatly influences the
way the network operates. A non-reducible path is highly 
likely to pass through a hub node, an alternativepath in-
volving a hub node is likely to be shorter than a path with-
out any hub node. Experiments indicate that at 2% of hub
nodes, the reduction in the average lengths of the paths with
and without hub nodes is rather significant. With this in
mind, we design a function to estimate h.

Algorithm 1 selects the top 2 nodes with highest de-
gree as hub nodes and store them in a set V’. For each node 

(1 i k), we use a breadth first search strategy 
to compute its distance to all other nodes in the graph.

The heuristic search starts when the distances from a
hub node to other nodes have been computed. Suppose the
source node is and the destination node is For each
node in G, the estimated length of the remaining path,

is given by the estimation function (see Algorithm 2).
Lines 4-6 set h to 1when is a neighbor of Lines 8-11
check if is a hub node before using the pre-computed dis-
tance. Lines 12-14 compute the distanceof through all the
hub nodes. Finally, Line 15selects the smaller of the short-
est distance through the hub nodes and - g) where
is the diameterof G, and g is the sum of the length of
path thus far. 

Input:PPI network G = (V,E) ,number of hub nodes k;
2: Output: Set of selected k hub nodes and the distance 

for each V do

5: end for
6 Sort nodes with their degrees from the largest to smallest;
7: Let = . . ,
8: for each node V’, 1 a k do

Compute the distance u) for all nodes V -
with a breadth first search strategy; 

u)for each and V -V’;

=No. of neighbours of

endfor

Algorithm 2 Estimate
Input: PPI network G = E ) ,current node the initial 

Output:Estimated length of remaining path h for node u;
3: Let be the diameter of graph G, and g be the sum of the

if is a neighbor of then
5: h = 1;
6 retumh;
7: endif
8: then

node and the destination node 

length of path thus far;

h
retumh;

11: endif
12: for each do
13:
1 4 endfor
15: = .. -
16: h;

(d’ u)+

5. Experiment Results 

We implemented the heuristic IRAP in C++ and eval-
uated performance with the AlternativePathFinder al-
gorithm. of experiments are performed on the
yeast protein-protein network. The first set of exper-
iments finds the speedup of heuristic over the
AlternativePathFinder algorithm. The second set of experi-
ments shows the accuracy of the heuristic compared
to the AlternativePathFinder algorithm.

Figure 4 indicates that as the network size increases,
the ratio of the runtime for the AlternativePathFinder algo-
rithm over the heuristic increases from 1.01 to 1.40.
A speedup of 40% is achieved for a 16,000 interactions net-
work. This indicates that it is feasible to run the algorithm 
on larger PPI networks, such as D. which has
more than 20,000 protein-protein interactions.

However, while the speedup achieved is impressive, one
is that the heuristic search may miss the optimal solu-

tion too often to make the results inaccurate. The next set of
experiments examines the effect of network size on the ac-
curacy of the heuristic 



Figure 5 shows that once the network size exceeds 5000
interactions, the accuracy of the heuristic IRAP is relatively
stable at a high degree of accuracy of around 95 %.

Figure 4. Speedup of heuristic search over 
algorithm.

Figure 5. Accuracy of the heuristic IRAP.

6. Conclusions

The dissection of the protein interactome is important
a better understanding of the biology of the cellular sys-
tem. Recent technological advances in this field has been
focused on the high throughput detection of protein inter-
actions in order to map the vast protein interactome. Unfor-
tunately, data generated in large-scale experimental studies 
using the high throughput technologies often have alarm-
ingly high error rates. 

In this work, we have focused on tackling the problem 
of high false positive rates in high-throughput experimental 
protein interaction data. We have shown that the IRAPmea-
sure is an effective way for filtering large of
prone experimentally-derived protein-protein interactions 
to detect reliable protein interactions. Given the expensive 
computational requirement of the al-
gorithm, we have devised a heuristic IRAPalgorithm that 
selects the most promising paths via an estimation function. 
The heuristic is able to achieve remarkable speedup 
while maintaining a high degree of accuracy.
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